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What is the UQ problem:

We develop a hypothesis (model) v
(, )

We confront it with reality (data) }Qﬁ
“«

How good is the model?
Is model A better than model B?
How do I mix model A with model B?
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The nuclear physics context
Where did nuclei come from? How were they

produced?
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r-process nucleosynthesis and rare isotopes
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r-process: how do we measure neutron
capture on unstable nuclei?

<~ (n,g) cross sections on unstable nuclei: Currently Impossible!
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<> (d,p) cross section offers an indirect measurement!
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What is the nuclear physics problem:

how certain are our reaction predictions?
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What is the UQ problem:

We develop a hypothesis (model)

We confront it with reality (data)
typically elastic scattering angular
distributions

How good is the model?
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What are the parameters of the model?

Optical potentials (assumed local to reduce computational time)

U(r) = V(r) £iW(r) + (Vso(r) +iWso(r))(1-s) + Ve (r)

Parameters:
Volume real Vr a
Volume imaginary W r,, a,
Surface imaginary V. r. a,
Spin-orbit real V. r, a,

Spin-orbitimaginary\Vt-a.

Coulomb r_




do/d(2 (Ratio to Rutherford)

Standard Chi2 minimization

Pull 200 sets from Chi2 distribution
Create 95% confidence intervals by removing
2.5% top and 2.5% bottom of the predicted

observables
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48Ca(p,p)*®Ca at 12.0 MeV

— 95% Confidence Bands
® ¢ Elastic Scattering Data
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Chi2 minimization and correlations

Previously: Uncorrelated Model Instead: For a Correlated Model
* Data and residuals are normally distributed * Model is also normally distributed
([dyy e dp)t ~ N (11, X) [m(x;601),...,m(x;0,)]" ~ N(u,Cpn)

(m(x;01) — di,...,m(x;0,) — dp)" ~N(0,%)  Residuals then have the distribution
m(x;01) —dy,...,m(x;6,) — dp]T ~ N(0,C,, +X)

* With covariance matrix « With covariance matrix

Yii = 0} Cm+X

e Leads to the minimization function « Leads to the minimization function

i=1 j=1

=§(m(x;zi>—di)2 =30 wislm(ei05) — di)(m(xi05) - d)

= (Cpn+%)!



L
Chi2 minimization and correlations
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What is the model for (d,p) reactions?

DWBA: distorted wave Born

approximation
Exact T-matrix for A(d,p)B in POST from:

Tpost —< ¢nA X ‘ A‘/f | _)17 ﬁl) >

deuteron elastic component

Take first term of Born series: \IJ§+)(771, él) —> Onp XdA

T2 < g x5 1 AV} |G x0) >



What is the model for (d,p) reactions?

DWBA: distorted wave Born
V(7L Ry) = bnp Xaa approximation
Tplgz/BA =< ¢nA Xz(gzg) | A‘/f | ¢np XdA >

proton elastic data

(exit channel) deuteron elastic data
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What is the model for (d,p) reactions?
ADWA: Adiabatic wave

approximation
Exact T-matrix for A(d,p)B in POST from: Johnson and Tandy, NPA1974
_ (—) > D
TpOSt —< ¢nA XpB ‘ A‘/f | 17R1) >
finite range
Adiabatic wave approximation: adiabatic

3B wave function expanded in approximation

Weinberg states

\Ijexa,ct _ Z Oz(r)\z(ﬁ) Uij (ﬁ) — _<¢z’|Vnp(UnA + UPA)|¢J>
1=0

Typically, only keep the first
Weinberg State

(T + )‘z'vnp - fd)(.f)z' =0




What is the model for (d,p) reactions?
ADWA: Adiabatic wave
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Chi2 minimization: transfer predictions

90Zr(d,p)?Zr at 23 MeV
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Limitations of the frequentist approach

Philosophical aspects:

- Probability as frequency: number of events over a total number of trails

- A 95% confidence band means that when repeating the measurement
many times, 95% of the times the data should fall within the band.

- There is no way to include UQ on events that cannot be repeated (e.g.
how likely is it that the power will fail during this talk?).

Practical aspects:

- Problem with local minima versus the global minimum

- Inclusion of prior knowledge comes through ranges allowed for parameters
— potential for introducing biases

- What is the correct Chi2 function that includes the correct correlations in
the theoretical model?
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Bayes' theorem

P(green,red)= 5/9 x 4/9

P(red,green)= 4/9 x 5/9

P(green,red)=P(red,green)



Bayesian statistics

Bayes’ Theorem

Posterior — probability that the model/parameters
are correct after seeing the data

Prior —what is known about the model/
parameters before seeing the data

Likelihood — how well the model/parameters
describe the data p(D|H) — €—X2/2

Evidence — marginal distribution of the
data given the likelihood and the prior

Thomas Bayes (1701-1761)

Markov Chain Monte Carlo (MCMC)
p(H;)p(D|H;)

Randomly choose
new parameters

p(Hy)p(D|Hy)

p(Hy)p(D|Hy)

= p(H;)p(D|H;)




Comparing frequentist and Bayesian

- Probability as frequency - Probability as degree of belief

» A 95% confidence band means - Posterior distribution updates our degree of
that when repeating the belief on the model, in light of the data
measurement many times, 95% of  |. A 95% confidence interval means, given
the times the data should fall the data, what are the parameter ranges
within the band. of the model for a 95% degree of belief.

Practical aspects:

Practical aspects: - Markov Chain Monte Carlo (MCMC) spans

- local minima full space and is fully automated

- ranges allowed for parameters — - Inclusion of prior (reduction of biases)
potential for introducing biases . Correlations automatically included

- correlations in the theoretical . Computationa”y more expensive

model?




The Bayesian Conspiracy: “What
matters is that Bayes is cool, and
if you don’t know Bayes, you
aren’t cool.”

Yudkowsky offers to decode the secret:

Maybe you see the theorem, and you understand the theorem,
and you can use the theorem, but you can’t understand why
your friends and/or research colleagues seem to think it’s the
secret of the universe. Maybe your friends are all wearing
Bayes’ Theorem T-shirts, and you’re feeling left out. Maybe
you’re a girl looking for a boyfriend, but the boy you’re
interested in refuses to date anyone who “isn’t Bayesian”.
What matters is that Bayes is cool, and if you don’t know
Bayes, you aren’t cool.

http://www.anotherpanacea.com/2012/10/the-bayesian-conspiracy-what-matters-is-that-bayes-is-cool-and-if-you-dont-know-bayes-you-arent-cool/
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Optical model uncertainties:

comparing frequentist and Bayesian
Ca(n,n) at 12 MeV  48Ca(p,p) at 14 MeV ~ **Ca(p,p) at 25 MeV
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Optical model uncertainties:

comparing frequentist and Bayesian

48Ca(n,n) at 12 Me

parameter correlations in
Bayesian look very different
than in the frequentist approach
blue (frequentist)
orange (Bayesian)

King, Lovell, Neufcourt, Nunes PRL (2019)
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Propagating optical model uncertainties to (d,p)
comparing frequentist and Bayesian

102 *®Ca(d,p)*°Ca at 19.3 MeV

Uncertainties are larger than
previously thought

Need to explore ways to reduce
optical potential uncertainties
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Exploring experimental conditions: Angular information

208‘Pb(n,n)2°8Pb at 30 MeV
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Catacora-Rios, King, Lovell, Nunes; PRC submitted



11l . e;®Rh)6h:
Exploring experimental conditions: beam energy

208Ph(n,n)?%8Pb at 30 MeV
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Catacora-Rios, King, Lovell, Nunes; PRC submitted



Exploring experimental conditions: exp error bar

Reaction Aegag/10|Ac10/5
¥Ca(n,n) at 12 MeV 1.53| 1.94
BCa(p,p) at 12 MeV 1.68] 1.71
BCa(p,p) at 21 MeV 1.55| 1.74
8Ca(d,p) at 21 MeV 1.68) 1.52
2%Ph(n,n) at 30 MeV|  1.62| 1.79
208Ph(p,p) at 30 MeV 1.39] 1.61
205ph(p,p) at 61 MeV|  1.99| 1.74
205ph(d,p) at 61 MeV|  1.41| 1.58

Catacora-Rios, King, Lovell, Nunes; PRC submitted
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Exploring experimental conditions:

adding total (reaction) cross section
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104-
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Conclusions

- Frequentist approach is not reliable: high confidence intervals to strongly
overestimate the level of confidence on should have in the predictions

- Bayesian approach shows large uncertainties, larger than originally thought.
- Also reveals different picture for parameter correlations

- Still hard to discern between models so exploring ways to decrease
uncertainty:
- Using additional data at nearby energies
- Using total/reaction cross sections in addition to elastic



Outlook M

Diversify the data to reduce uncertainties:

®
3

- Including polarization data
- Including charge exchange angular distributions=

Model comparison, model mixing and model error?

How good is the model?
Is model A better than model B?
How do I mix model A with model B?
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