Beyond the proton drip line with Bayesian analysis

Samuel A. Giuliani

Michigan State University & NSCL/FRIB, East Lansing

March 4th, 2020

In collaboration with: L. Neufcourt, Y. Cao, W. Nazarewicz, E. Olsen and O. Tarasov

> A.I. for Nuclear Physics workshop Thomas Jefferson National Accelerator Facility

> > Newport News, VA

Introduction Results	Conclus	ions
•0 0000	0	

Motivation

- Knowledge of nuclear binding energy crucial for basic science and applications.
- Global mass models show significant discrepancies far from stability.

- Goal: combine Bayesian analysis and global mass models
 - Uncertainty quantification through credibility intervals.
 - Increase predictive power by reducing systematic deviations.
 - Model mixing based on most current experimental data.
- This talk: Study of proton drip line and 2-proton emitters.

Separation energies and GP

L. Neufcourt et al., PRC98, 034318 (2018)

• Model 1- and 2- proton separation energies (residuals):

$$\delta(Z,N) = S_p^{\exp}(Z,N) - S_p^{\text{theo}}(Z,N).$$

• Use emulators to improve models' predictions:

$$S_p^{\mathsf{em}}(Z,N) = S_p^{\mathsf{theo}}(Z,N) + \delta^{\mathsf{em}}(Z,N).$$

• Emulators posteriors constructed from Gaussian Processes (GP):

$$\delta^{i}(Z,N) \equiv \delta^{i}(x) \sim \mathcal{GP}(\mu, k_{\eta,\rho}(x, x')) \quad \text{with} \quad k_{\eta,\rho}(x, x') = \eta^{2} e^{-\frac{(Z-Z')^{2}}{2\rho_{Z}^{2}} - \frac{(N-N')^{2}}{2\rho_{N}^{2}}}$$

Residuals corrections and uncertainties constructed from posteriors distributions:

$$\delta^{\mathsf{em}}(Z,N) = \frac{1}{n_{MC}} \sum_{i=1}^{n_{MC}} \delta^i(Z,N),$$

$$\sigma(Z,N) = \sqrt{\frac{1}{n_{MC}} \sum_{i=1}^{n_{MC}} (\delta^i - \delta^{\mathsf{em}})^2}.$$

Introduction	Results	Conclusions
00	0000	0
		1

Results: model performance

L. Neufcourt et al., PRC101, 0141319 (2020)

- 11 global mass models (7 Skyrme, 1 Gogny, 3 astrophysics).
- Training Data: AME03. Testing data: AME16-03

		SkM*	UNEDF1	FRDM
	S_{1p} :	0.86	0.54	0.44
IdW	S_{2p} : 1.87	0.62	0.71	
	S_{1p} :	0.65	0.47	0.40
$\mu \equiv 0$	S_{2p} :	S_{1p} : 0.05 0. S_{2p} : 1.14 0.	0.50	0.55
$u \neq 0$	S_{1p} :	0.54	0.38	0.40
$\mu \neq 0$	S_{2p} :	0.76	0.39	0.55

Table 1: S_{1p} and S_{2p} rms deviations (in MeV) for individual models.

- GP reduce rms by $\sim 25\%$ (additional $\sim 15\%$ with $\mu \neq 0$).
- Smaller impact on more phenomenological models fitted to larger datasets.
- Similar corrected rms: most of systematic has been captured.

Introduction	Results	Conclusions
00	0000	0

Bayesian model averaging (BMA)

- Model mixing performed by averaging individual mass models' posteriors.
- Prior weights w_k : capability of a model \mathcal{M}_k to predict known 2p emitters.

$$w_k(\mathbf{I}) \propto p\left(\mathcal{M}_k | Q_{2p} > 0, S_{1p} > 0 \text{ for } x_{2p,\mathsf{known}}\right)$$

 $w_k(\mathbf{II}) \propto p\left(\mathcal{M}_k | Q_{2p} \text{ of } x_{2p,\mathsf{known}}\right).$

SkM*	0.00	0.00
UNEDF1	0.14	0.71
FRDM	0.17	0.00

BMA-I

BMA-II

Table 2: Model posterior weights.

	BMA-I	BMA-II
S_{1p}	0.38	0.38
S_{2p}	0.35	0.37

Table 3: S_{1p} and S_{2p} rms (in MeV).

BMA: Proton drip line

 $p_{\text{ex}} = p(S_{1p/2p}^* > 0 | S_{1p/2p}).$

L. Neufcourt et al., PRC101, 0141319 (2020)

Introduction	Results	Conclusions
00	000	0

BMA: 2p emitters

$$p_{2p} = p(S_{2p}^* < 0 \cap S_{1p}^* > 0 | S_{1p/2p}),$$

L. Neufcourt et al., PRC101, 0141319 (2020) p_{2p} BMA-I 1.00 16 0.95 0.84 11 Relative neutron number 0.67 6 true 2p 0.50 observed ☆ BMA-II decay predicted dripline 16 FRIB 200 MeV/u 0.33 11 0.16 6 0.05 _0.00 20 28 50 Proton number 82

Introduction 00	Results 0000	Conclusions •

Conclusions

- Statistical correction greatly improves models' accuracy:
 - $\sigma(S_{2p}) = 400 600$ keV.
 - GP with $\mu \neq 0$ better reproduces extrapolative data.
- BMA obtained using different weights:
 - On testing data, BMA outperforms single models.
 - BMA $\sigma(S_{1p})/\sigma(S_{2p}) = 380/360$ keV: precision limit of current models?
- No 2p emitters with $\tau > 10^{-7}$ s are predicted above Z = 54.
- Future work:
 - Propagate posteriors on network calculations for astrophysical studies.
 - Employ statistical analysis to fission.

Backup

GP parameters: distributions of posteriors samples

L. Neufcourt et al., PRC101, 0141319 (2020)